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1 Introduction

Public rms account for the majority of patent production in the U.S. (Sørensen and Stuart, 2000), yet

a growing body of research highlights the critical role of private rms-especially young rms-in producing

novel and high-impact innovations (Gao et al., 2018; Ewens and Marx, 2024). At the same time, rms do

not innovate in isolation. Investment decisions often generate spillovers, where knowledge and technology

diuse across rm boundaries (Grennan and Lowry, 2024). Prior studies show that public spillovers lower

the cost of innovation (Bloom et al., 2013), but tend to shift innovation output toward more incremental

advances (Byun et al., 2021). In this paper, we show that spillovers from private rms-particularly young

ones-not only increase innovation output among public rms but also shift it toward more novel innovations.

By neglecting such spillovers, prior literature has underestimated the total impact of innovation spillovers

on public rms’ innovation outcomes.

While spillovers from public rms have been extensively studied, we examine those from private rms

for two key reasons. First, public and private rms dier in their regulatory status, which may inuence

the nature and diusion of spillovers. Public rms are subject to a high degree of mandatory disclosure,

along with greater price eciency, trade visibility, and scrutiny from analysts and regulators. These features

generate a clear benet for all market participants, who can extract information from public rms’ prices,

lings, and product decisions (Bennett et al., 2020). In contrast, it is often assumed that public rms have

little to learn from private rms, which operate with less transparency and limited public reporting. However,

we argue that patenting is itself a form of technological disclosure, and that even unlisted rms contribute

meaningfully to the public information environment, particularly in an era where rms with high levels of

intangible capital often choose to remain private (Stulz, 2020).

The second reason relates to the rm’s life cycle. Public rms tend to be older, larger, and more

established incumbents that benet from economies of scale and strong market positions. In contrast,

younger rms benet from a more concentrated investor base and are therefore more likely to explore novel

and untested ideas (Ewens and Marx, 2024). As a result, the types of spillovers public rms are exposed to

from younger rms may dier signicantly than those they experience from other rms at a similar stage

in the life cycle. Given public rms’ market power and resources, they may also be in a better position

to absorb and respond to innovations emerging from younger entrants. We therefore study these spillovers

from the perspective of the public rm to better understand how knowledge ows between incumbents and

entrants shape innovation dynamics from the market leaders’ perspective.

Ex ante, it is unclear how spillovers from young rms aect the innovation behavior of public rms.
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These eects may manifest along two dimensions: innovation quantity, which reects the overall intensity of

knowledge output, and innovation novelty, which captures the degree to which the innovation is breakthrough

or disruptive. We propose two competing hypotheses to frame the potential responses of public rms: the

Value Hypothesis and the Schumpeterian Hypothesis. Under the Value Hypothesis, public rms respond

to spillovers from young rms by increasing their innovation activity. In this view, knowledge spillovers

act as a positive externality - providing public rms with access to novel technologies, processes, or ideas

without requiring them to bear the full cost of discovery (Bloom et al., 2013). This reduces the marginal

cost of innovation and allows rms to build upon the cumulative nature of technological progress (Jae,

1986; Griliches, 1991). Consistent with prior work on public-to-public spillovers, this hypothesis suggests

that public rms should similarly benet from knowledge generated by young, private rms.

Alternatively, public rms operating in a similar knowledge space to young rms may lead to a cycle

of “creative destruction” (Schumpeter, 1942). Under this Schumpeterian Hypothesis, young rms drive

economic progress through technological advancements and new business models that render older industries

or companies obsolete. As entrants introduce breakthrough innovations, public rms may experience a decline

in market share, protability, and future innovation output (Aghion et al., 2005). Thus, while spillovers by

young rms provide new knowledge, they may also create a competitive challenge for public rms operating

in closely related industries.

To test these two alternative hypotheses, we construct a novel measure of technology spillover from

private rms to public rms. Following the approach of Bloom et al. (2013), we measure the distribution

of public and private rms patenting across technology elds. We then scale the technological overlap by

the number of inventors in each private rm and aggregate by public rm-year. We validate this measure

by showing that spillovers lead to more patent citations and active information acquisition by public rms

about private rms.

To distinguish more clearly between dierent stages of the rm life cycle, we consider two types of private

rms: entrepreneurial rms, dened as those three years or younger, and venture capital (VC) -backed rms1.

Entrepreneurial rms produce more novel innovations than other rms (Ewens and Marx, 2024), suggesting

they have high potential for producing valuable spillovers. On the other hand, VC-backed rms develop

patents that are more highly cited than other rms (Ewens and Marx, 2024). This suggests that other

inventors may be more aware of VC-backed private rms as they have undergone investor screening, reducing

information asymmetry of their innovations. Thus while entrepreneurial rms may produce more novel

innovations than VC-backed rms on average, public rms may be more aware of VC-backed innovations.
1VC-backed rms can also be classied as entrepreneurial rms and vice versa if rms three years or younger receive venture

nancing.
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To examine whether public rms benet dierently from these two groups, we construct separate measures of

private-to-public technology spillovers: spillovers from VC-backed rms and spillovers from entrepreneurial

rms.

Our rst set of tests examines the impact of young rm spillovers on public rms’ innovation output,

proxied by patents produced and the number of citations received. The results support the Value Hypothesis:

public rms with larger spillovers from private rms experience an increase in subsequent innovation output.

This indicates that larger spillovers lower the cost of innovation, consistent with the positive externalities

created by spillovers between public rms (Bloom et al., 2013). Economic magnitudes are larger for VC

spillovers than for entrepreneurial spillovers, suggesting that public rms may be more attuned to VC-backed

innovations, which face lower information asymmetry.

Next, we examine whether technology spillovers inuence public rms’ innovation quality and novelty,

specically distinguishing between exploitative and exploratory innovation. Exploitative innovation builds

on existing ideas, while exploratory innovation involves pursuing unknown knowledge, which requires both a

tolerance for failure and a signicant commitment of resources (Manso, 2011). Previous literature nds that

larger spillovers among public rms tend to shift innovation eorts toward more incremental advancements

(Byun et al., 2021), as these spillovers reduce the cost of exploitative innovation relative to exploratory

innovation. However, young private rms are more likely to generate novel and breakthrough innovations

than their public counterparts (Gao et al., 2018). Consequently, greater spillovers from young rms may

reduce the cost of exploratory innovation relative to exploitative innovation. Our ndings support this

prediction: public rms with larger technology spillovers from private rms produce more novel innovations

and fewer incremental innovations, with the eect being stronger for VC spillovers, consistent with VC-backed

rms facing lower information asymmetry than entrepreneurial rms.

To mitigate concerns that our results are driven by transitory shocks simultaneously aecting technology

spillovers and innovation output, we construct an instrumental variable for our main spillover measure.

Specically, we exploit exogenous changes in the availability of inventors to private rms resulting from

variations in non-compete enforceability laws as our primary identication strategy. Non-compete laws are

governed at the state level and vary signicantly across states and over time (Starr et al., 2018). For a given

public rm, we measure its private rm peers’ exposure to non-compete laws based on their headquarters’

locations.

Prior literature nds that non-compete agreements (NCAs) negatively impact labor mobility (Marx

et al., 2009), entrepreneurial innovation (Johnson et al., 2023), and entrepreneurial entry (Marx, 2022). As

a result, private rms are dierentially aected by non-compete laws depending on their location and the

timing of legal changes. These dierences inuence private rms’ inventor stock, which in turn aects the
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focal public rm’s technology spillovers (relevance criterion). Since public rms experience spillovers from

numerous young rms across dierent states, the aggregated spillover—instrumented by the private rms’

state locations—should be exogenous to any single public rm’s corporate decisions (exclusion criterion).

Using this instrumental variables approach, we establish a causal link between private rm spillovers and

public rm innovation.

After showing that private rm innovation has positive spillovers on public rm innovation, and these

eects are causal, we next test the channel through which spillovers occur. A well-established literature

identies labor mobility as a key channel for knowledge transfer (e.g. Bloom et al., 2020). Consistent with

this, we nd that greater VC spillovers are associated with an increase in both the number and propor-

tion of newly hired inventors from VC-backed rms. However, we do not observe a signicant eect for

entrepreneurial spillovers. Together with our ndings on spillovers and innovation output, this suggests a

distinct role for VC-backed rms in facilitating public rm innovation from young rms.

Rather than hiring inventors, public rms may also invest in private rms through corporate venture

capital (CVC) or outright acquisitions. Our ndings indicate that larger VC spillovers are associated with

an increase in VC-backed acquisitions. This suggests that public rms actively manage these spillovers by

acquiring innovation when there is overlap in their technological base. In contrast to acquisitions, Ma (2020)

suggests that public rms tend to invest in private rms when there is no overlap in knowledge base, aiming

to learn more about new technologies to enhance their innovation eorts. Consequently, we nd no signicant

relationship between private rm spillovers and CVC investments.

Our paper contributes to three strands of literature. First, we contribute to a growing literature on

spillovers between rms. Spillovers arise because innovation is inherently a public good (Arrow, 1972).

In a seminal paper, Jae (1985, 1986) rst denes the technological space of rms by classifying their

patents in dierent technology classes. Building upon this, Bloom et al. (2013) examine the interaction

between technological spillovers and product market spillovers. Intuitively, although innovation has a positive

externality on other rms, it may also take away product market share from less innovative competitors.

The authors nd that the technological spillover eect exceeds product market eects. Yet, the prospect of

competitors beneting from in-house innovation may discourage rms from expending resources on R&D.

Arora et al. (2021) and Antón et al. (2024) provide further evidence on the heterogeneous impact of knowledge

spillovers on innovative rms’ incentives and show that for some rms, the benet of R&D outweighs the cost

from spillovers. Importantly, rms with large spillovers continue to produce more R&D, but this innovation

is more incremental, rather than breakthrough innovation (Byun et al., 2021). Whereas prior papers have

focused on spillovers between publicly traded rms,2 we contribute to this literature by constructing an
2Notable exceptions include Matray (2021) who nds spillover eects from public rms to local entrepreneurship.
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analogous measure with young, private rms. Our results are dierent from prior ndings: Public rms are

more likely to have breakthrough innovation when they are in the same technological space as innovative

private rms.

Second, our paper contributes to the literature on cross rm dynamics in public and private markets.

There are several avenues for interactions between mature and young rms. On the one hand, mature rms

whose innovation has slowed down can benet from knowledge from young, innovative rms. For example,

Ma (2020) explores how public rms actively seek innovation improvement through CVC investment. Sim-

ilarly, Lerner (2012) suggests collaboration between public and private rms through a “hybrid” model in

which corporate R&D labs work with VC-backed startups. Mergers may also improve innovation outcomes,

depending on technological overlap (Bena and Li, 2014). On the other hand, if innovative rms pose a product

market threat, public rms can leverage their market power to inuence innovative practices. Cunningham

et al. (2021) show that public rms acquire competitors through “killer acquisitions.” We contribute to this

literature by showing another mechanism through which public rms benet from private rms - knowledge

spillovers - without direct investment or acquisition.

Lastly, our paper contributes to the literature on private and public rm innovation. Several papers have

examined dierences in innovation across public and private rms. Ewens and Marx (2024) highlight that

rms produce their most innovative patents when they are young. Similarly, Gao et al. (2018) show that

private rms’ patents are more exploratory and Bernstein (2015) nds a decrease in innovation post-IPO,

with some heterogeneity across public rms’ nancial dependence (Acharya and Xu, 2017). We show that

public rms’ innovation improves when private rms are in the similar technology space as they provide

valuable knowledge transfers.

2 Hypotheses

R&D activity generates two types of spillovers for rms: technology or knowledge spillovers and product

market rivalry spillovers. Seminal work by Bloom et al. (2013) develops a methodology to identify the

separate eects of these two types of spillovers. This methodology has been used in subsequent work to test

how rms respond to these two types of spillovers (e.g. Qiu and Wan, 2015; Byun et al., 2021; Eldar et al.,

2023).

An important observation is that these measures are limited to spillovers between public rms. While

public rms produce the majority of patents, young, private rms are more likely to produce more novel

innovation (Gao et al., 2018) and are more dominant in the early years of an industry (Ewens and Marx,

2024). Since private rm innovation is dierent from public rms, it is unclear how spillovers from young
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rms may impact public rm innovation. In line with prior literature on public spillovers, public rms may

also benet from private rm spillovers and increase their innovation. Alternatively, public rms operating in

a similar knowledge space to young rms may lead to a cycle of “creative destruction” whereby young rms

drive economic progress, rendering older industries or companies obsolete. We refer to these two alternatives

as the Value Hypothesis and the Schumpeterian Hypothesis. We describe the hypotheses below.

2.1 The Value Hypothesis

The existing literature, including Jae (1986) and Bloom et al. (2013), shows that large technology spillovers

promote innovation output. The Value Hypothesis posits that knowledge spillovers from private rms lower

the cost of research and development for public rms, thereby enhancing their capacity to innovate. Accord-

ing to this view, larger spillovers act as a positive externality, allowing public rms to access new technologies,

processes, or knowledge without bearing the full costs of development (Bloom et al., 2013). This diusion

of ideas leads to increased productivity and higher innovation output as rms can build on existing en-

trepreneurial innovations, leveraging the cumulative nature of technological progress (Jae, 1986; Griliches,

1991). Therefore the Value Hypothesis predicts that larger spillovers with young, private rms increases

public rm innovation output.

2.2 The Schumpeterian Hypothesis

In contrast, the Schumpeterian Hypothesis draws on the concept of “Creative Destruction” (Schumpeter,

2013), which suggests that public rms operating in the same technological or market space as entrepreneurial

rms may face disruption rather than benet from spillovers. Young rms produce more novel patents and are

dominant in the early years of an industry (Ewens and Marx, 2024). Therefore, the inux of innovative ideas

from startups may accelerate competition, threatening incumbents by rendering their existing technologies

or business models obsolete.3 As startups introduce breakthrough innovations, public rms may experience

a decline in market share, protability, and future innovation output (Aghion et al., 2005). Thus, while

spillovers by young rms provide new knowledge, they may also create a competitive challenge for public

rms operating in closely related industries. Therefore the Schumpeterian Hypothesis predicts that larger

spillovers with young, private rms decreases public rm innovation output.
3For example, Blackberry and Nokia were dominant players in the mobile phone market in the early 2000s. However, the

emergence of private rms like Android Inc., which developed an open-source mobile operating system in 2003, began to shift
the landscape. By oering a exible and customizable platform, Android lowered the barriers for hardware makers such as
Samsung, LG, and Motorola to enter and compete in the smartphone space without building their own operating systems. As
Android matured, it enabled rapid innovation and user-driven customization. Meanwhile, Blackberry and Nokia, reliant on
their proprietary systems and slow to adopt touch interfaces and app ecosystems, struggled to keep pace. Despite their early
leadership, both rms failed to adapt to the new mobile paradigm, and as Android became the global standard, they lost market
relevance.
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3 Data and Measurement

In this section, we discuss the data and measures used in the empirical analysis. First, we explain the

construction of the spillover measures. Second, we describe the innovation outcomes utilized in the study.

Third, we provide an overview of additional outcomes and control variables. Fourth, we present the sample

summary statistics for the rm-year panel spanning 1990 to 2021. Finally, we provide additional background

and validation, as well as examples of technology spillovers.

3.1 Technology Spillovers

We measure the level of technology spillovers based on the methodology of Jae (1986) and Bloom et al.

(2013). These studies theoretically derive technology spillovers as a process of knowledge transfer when rms

in similar technology elds interact with each other. The more intensively rms interact and the closer their

elds are, the more knowledge that is transferred - i.e. higher technology transfers generated. Based on

this framework, the authors employ an empirical proxy to quantify the theoretical model and generate the

measure of technology spillovers.

The rst step in constructing the technology spillover measure is to calculate the closeness between two

rms’ technology elds. To capture this component, Bloom et al. (2013) employ the overlap between two

rms’ patent technology classications. We obtain rms’ patent technology classications from the USPTO-

Patentsview database. This database provides detailed information for more than three million patents

granted between 1976 and 2023, including unique identiers for inventors, assignee, and patent technology

classes. To identify patents produced by VC-backed and entrepreneurial rms, we merge in VC identiers and

assignee age from Ewens and Marx (2024) link tables. Ewens and Marx (2024) classify entrepreneurial rms

as establishments between 0 and 3 years old. The VC identier provided is a time invariant identier if the

assignee was ever VC-backed. We therefore fuzzy name match all the VC-backed assignees with Crunchbase

data to classify assignees and their patents as VC-backed from the date of their rst VC nancing until they

either exit through IPO or acquisition or two years after their last VC-nancing (whichever comes rst). We

construct three versions of the technology spillover measure: between public rms (used in prior literature),

public rms and VC-backed rms and public rms and entrepreneurial rms. The measure captures the

technology closeness between two rms i and j as follows:

Techij,t =
Xi,tX

′
j,t

(Xi,tX ′
i,t)0▷5(Xj,tX ′

j,t)0▷5
′ (1)

where Xi,t = (Xi1,t, Xi2,t, ▷▷▷, Xiτ,t, ▷▷▷, XiT,t) is a vector that denotes public rms i’s proportion in tech-
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nology classications τ = 1, 2, ▷▷▷, T over the sample period up to time t and Xj,t is dened in a similar way

for public rms, VC-backed rms, entrepreneurial rms, and all private rms. techij,t therefore measures the

correlation of two rms’ proportion of patents in each technology classication. The higher the correlation,

the closer their technology elds are.

Prior literature interacts Techij,t with rm j’s R&D stock in year t. As stated by Bloom et al. (2013), rm

j’s cumulative R&D stock proxies for the level of rm j’s cumulative R&D input and, hence, the intensity

of technology diusion between rms j and i. However, private rms do not have to disclose their R&D

expenses. In addition, young private rms such as entrepreneurial rms and VC-backed rms typically do

not have a separate R&D department as the purpose of the new rm is for a new product. Therefore instead

of interacting techij,t with rm j’s R&D stock, we multiply it by the cumulative number of unique inventors

working for rm j up until time t (Inventorsj,t). The intuition is that human capital is the channel through

which knowledge transfers occur and, like R&D inputs, the more inventors employed by a rm, the higher

the intensity of technology diusion between rms. Because inventors leave the rm, we “depreciate” the

cumulative number of inventors until t− 1 by 15%, similarly to Antón et al. (2024). Therefore the spillover

measure is constructed as follows for each public rm i:

SpillT echi,t =


j ̸=i

techij,t × Inventorsj,t (2)

Figure 1 shows a time series of natural log of the various spillover measures: VC spillover (blue bars) and

entrepreneurial spillover (red bars) in Panel A and public spillovers (purple bars) in Panel B.

It is important to note that the technology spillover measure captures potential knowledge spillovers

between two rms. Bloom et al. (2013) identify a second spillover eect from a rm’s innovative activity:

the market rivalry eect. The market rivalry eect arises from the product market competition between two

rms whereas knowledge transfer between two rms results from the overlapping of technology elds. While

distinct from each other, there may be overlap as rms that have similar technology elds may also compete

in similar markets and thus is necessary to control for the product market rivalry eect.

To capture product market rivalry spillovers, we use data from Hoberg and Phillips (2016). The authors

determine the cosine similarity of words contained in the Business Description section of 10-K statements.

Hoberg and Phillips (2016) build a vocabulary of 61,146 words that rms use to describe the characteristics

of their products. Based on this vocabulary, the produce for each rm i a vector of word frequencies

where each entry of the vector corresponds to the number of times a word appears in rm i’s product

description. SpillPMi,j is the cosine similarity between rm i and j and ranges between 0 (no overlap in

word frequencies) and 1 (perfect overlap). Hoberg and Phillips (2016) show that these cosine similarity
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scores correctly identify industry groupings and predict competitive relationships between rms better than

standard industry classications.

Analogously to the technology spillover measure, we construct the pool of product market spillovers for

rm i in year t as:

SpillPMi,t =


j ̸=i

PMij,t × Inventorsj,t (3)

We only construct SpillPMi,t between public rms as VC-backed and entrepreneurial rms do not le

10-Ks. Figure 1 shows a time series of the natural log of product market spillovers (orange bars) in Panel B.

3.2 Product Market Spillovers

Whereas technological progress has positive spillovers on peers in the same technology space, it may also have

a business-stealing eect (Bloom et al., 2013). Under the creative destruction hypothesis, more innovative

rms obtain market share from less innovative rms. We would expect this eect to be stronger when rms

are in the same product market space. In their seminal paper, Bloom et al. (2013) calculate product market

spillover analogously to technological spillover, but using sales-weighted SIC categories rather than patent-

weighted patent classes. However, SIC classications and sales are not readily available for private rms. We

therefore classify private rms into 2-digit SIC classes using a TF-idf model in four steps. First, we collect

all 10K description data from public rms in 2010, 2016, and 2020 using the ”Edgar” package in R.4 We

then merge these descriptions to compustat on cik to obtain SIC classications and complete our training

data. Second, we clean the text data by dropping the most commonly used words (”and”, ”to”) and apply

a tf-idf vectorizer to the cleaned text data. The vectorizer scores each word in a document by multiplying

the word term frequency (TF) by the inverse document frequency (IDF). This procedure assigns a greater

importance to less commonly used words, so that for example technical jargon receives greater weight for

classication than more commonly used words. Third, we use this vectorized data to train a Support Vector

Machine (SVM) classier, which is 76% accurate in its industry classication. Fourth and nally, we apply

the trained model to private rm descriptions from Crunchbase, which yields SIC classications for all VC-

backed rms. We use this data to count the number of rms per 2-digit SIC code. In the main tests, the

number of rms in a product market negatively aects innovation, but this negative eect does not exceed

the positive technology spillover, or learning eect, from private to public rms.
4Data to be expanded. Link to Edgar package: https://www.rdocumentation.org/packages/edgar/versions/2.0.7/

topics/getBusinDescr
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3.3 Innovation Outcomes

We use two proxies to determine a rm’s innovation output: PatentCount and CitationCount. PatentCount

is the total number of patents a rm applies for in a given year. We use the ling year as this captures when

the innovation actually occurs, as opposed to when the patent is granted (on average, nearly 3 years after

ling). We also calculate the number of citations each patent receives and aggregate it to the rm level. This

is commonly considered to be a patent’s “impact” (Hall et al., 2005). To account for the truncation bias

of patent citations and the diering size and types of technology classes in innovation, we scale a patent’s

citations by the mean number of citations received by patents in the same technology class and ling year.

In addition, we construct proxies to characterize the nature of public rms’ patents, distinguishing be-

tween more incremental and more breakthrough innovations. Our rst proxy captures the degree of dis-

ruptiveness in a particular patent. Specically, we use Bowen III et al. (2023) data on Rapidly Evolving

Technology (RETech). Bowen III et al. (2023) identify words in patent descriptions that are used with in-

creasing frequency in given technology areas, and demonstrate that patents intensely using these words are

at the forefront of technological waves. Intensive use of newly advancing words produces high positive values

of RETech, while use of words on the decline produce low or negative values. We use rms’ RETech◁Patent

to identify how disruptive their innovation output is on average.

Our second proxy focuses on how incremental the patent is to prior innovation output. We use the

backward similarity measure created by Arts et al. (2023), which measures for each patent the average

cosine similarity between the focal patent and all patents led in the ve years before based on keywords

retrieved from the title, abstract and claims of the patent. The intuition is that patents with high backward

similarity are similar to existing patent stock, and are therefore less novel and more incremental. We therefore

use rms’ BackwardSimilarity◁Patent to identify how incremental their innovation output is on average.

3.4 Other Outcomes and Controls

In addition to innovation outcome measures, we also examine rms’ acquisition and venture activity. We

use data from Crunchbase to calculate the number of VC-backed rms acquired by public rm i in year t as

well as the number of corporate venture capital (CVC) investments public rm i conducts in year t.

Throughout our analyses, we control for a number of rm characteristics, including R&D (R&D expen-

diture scaled by assets), ln(Size) (natural log of total book value of assets), ln(Age) (natural log of rm

age), Leverage (total book value of debt divided by total assets)Capex, Cash (both scaled by total assets),

M◁B (total assets plus market value of equity minus book value of equity, scaled by total assets), and ROA

(net income divided by total book value of assets).
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3.5 Summary Statistics

Table 1 provides summary statistics at the rm-year level. Patent and citation data is skewed, with an

average of 18.62 patents and 12.48 citations, but one patent and no cites at the median. The average patent

has a RETech score of 1.43 and backward similarity score of 3.07. Firms rarely acquire VC-backed startups

or conduct CVC investments with the average rm acquiring 0.02 VC-backed startups and investing in 0.15

startups per year. The mean technology spillover measure between public rms is 9.85, comparable to Antón

et al. (2024).5 The mean technology spillovers measures between public and VC backed rms and public

and entrepreneurial rms is 5.58 and 5.01 respectively. These are smaller than the public spillover measure,

however this is unsurprising as public rms produce the majority of patents. The mean product market

rivalry measure is 3.09. In terms of rm characteristics, an average rm in our sample has total assets

of $1.1 billion and an age of 19 years. It has R&D expenditure of $240 million, leverage ratio of 0.24, a

capex-to-assets ration of 0.05, a market-to-book ratio of 2.73, a cash-holdings-to-assets ratio of 0.25 and an

ROA of -0.15. These magnitudes are consistent with existing studies.

3.6 Validation and Interpretation of the Technology Spillover Measure

To aid interpretation of our measure and results, we now provide some intuition for the construction of the

spillover measure, closely following Bloom et al. (2013). The spillover measure captures the total amount

a rm can learn from others. Knowledge spillovers occur when scientists encounter each others’ work. The

likelihood that scientists learn from each other is greater when they work in similar technological spaces.

These technology spaces are dened by rms’ patent classications. Because the measure is cumulative over

time, patenting activity during a given year does not need to fully represent a rm’s technology space.

When a rm’s technology space has large spillovers, the rm is exposed to innovation of others. This

exposure may lower the cost of innovation to the rm (Byun et al., 2021). We therefore think of technology

spillovers as an “input” to the production function of rms’ innovation. This is dierent from citations,

which are “outputs” of research and development. The goal of our paper is to examine how novel innovation

inputs from private rms aect public rm innovation. Therefore, spillovers are a more appropriate measure

for our setting than citations.

However, the mere existence of spillovers does not necessarily mean that rms utilize such spillovers. For

example, it is possible that a rm observes a new entrant’s innovation and decides to take their innovation

in a dierent direction. To verify directly that rms utilize spillovers, we conduct three tests. First, we
5Antón et al. (2024) scale spillovers by R&D expense, leading to an average ln(spilltech) measure of 11.74 while we scale

spillovers by the number of inventors, leading to an average ln(public spillover) value of 9.85.

11



examine whether public rms actively collect information when spillovers are high. To do this, we collect

clicks by public rms on private rms’ form D lings on the SEC EDGAR website. Clicks are a measure of

information acquisition. If spillovers are a proxy for learning, we expect information acquisition to increase

as spillover, or potential learning, increases. Table 2 presents results. As VC spillover increases, public rm

clicks on private rms also increase (columns (1) and (2)). The same is not true for public rm spillover

(column (3)). This supports our assumption that spillovers improve public rms’ information about recent

innovation in their technology space.

Second, if public rms are learning from private rms, we expect similarity across patents to increase.

To verify this, we use data from Whalen et al. (2020).6 The authors calculate similarity scores for each

citing-cited patent combination using a cosine distance measure. In columns 1-3 (4-6) of Table 3 we limit

our sample to public rm patents and VC (entrepreneurial) rm patents that cite each other. We then run

the following OLS regression in columns 1,2,4, and 5:

Similarityijt = βSpilloverijt +Xit + αi + αj + αt + ϵ (4)

where i is the public rm, j is the private rm, t is measured in years, and Spillover is the natural log of

spillover. Columns 1 and 2 include VC rms, while columns 4 and 5 include entrepreneurial rms. Columns

1 and 4 do not include control variables X, while columns 2 and 5 do. All columns show that spillover and

patent similarity are strongly positively related. Public rms that face higher spillover with a private rm

also have patents that are more similar to this private rm.

Since all other tests use spillover not at the public-private rm level, but aggregate to the public level,

we also test whether VC and entrepreneurial spillover at the public-rm-level is associated with higher

similarity scores. That is, we aggregate VC spillover and Entrepreneurial spillover as described in equation

(2) and drop private-rm xed eects αj . Columns 3 and 6 show results for VC and entrepreneurial spillovers,

respectively. Results continue to show that greater spillover is associated with greater similarity. We conclude

that although the spillover measure does not measure learning itself, it is correlated with direct measures of

information acquisition.

Third, we use the number of citations of VC-backed and entrepreneurial rm patents. If public rms

utilize knowledge from private rms, citations should increase. To mitigate concerns that public rms cite

old patents from formerly private rms that were VC or entrepreneurial at the time of ling, we limit the

citations to the previous 6 years. We conduct the same regression analysis as Equation 7, using a Poisson

model as our outcome variables are count variables, left censored at zero and skewed. The results are
6Data downloaded from https://zenodo.org/records/3552078
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displayed in Table 4.

The outcome variable in columns (1) through (3) are the number of citations of VC-backed patents in the

last 6 years. In column (1), we only include Log(PublicSpillover). The coecient is positive and statistically

signicant at the 10% level, and can be interpreted as a 10% increase in public spillover leads to a 3% increase

in VC citations. In column (2), we replace Log(PublicSpillover) with Log(V CSpillover). The coecient is

positive and statistically signicant at the 1% level and can be interpreted as a 10% increase in vc spillover

results in a 3.7% increase in VC-backed citation count. In column (3) we include Log(PublicSpillover) as

a control and the magnitude size and signicant largely goes away on Log(PublicSpillover). This indicates

that the increase in citation count is entirely driven by VC spillovers.

In columns (4) through (6), we replace the outcome variable with the number of citations of en-

trepreneurial rms in the previous 6 years. We nd no signicant eect on Log(EntrepSpillover) on the

number of entrepreneurial citations. The coecient on Log(PublicSpillover) is positive and statistically sig-

nicant in columns (4) and (6), suggesting further that VC spillovers provide a particular source of knowledge

spillover distinct from other types of young rms.

There are three reasons why we use technology spillovers rather than citations to measure learning. First,

and most importantly, spillovers represent a change to the cost of input into innovation, whereas citations

are an output of innovative activity. Second, citations are binary constructs, and do not measure nuances

such as the type of information learned (e.g. which tech space) or the amount of information learned (e.g.

the overlap between cited and citing patent) (Whalen et al., 2020). Third, it is important to distinguish

between technological knowledge spillovers and product market spillovers among rms, as they generate

dierent predictions for hoe rms respond to spillover. However, this distinction is not possible when relying

solely on patent citations. Firms may cite a patent either because they operate in a similar product market

or because they utilize a technology that is unrelated to their product. While a more detailed analysis of

these two spillovers is provided by Bloom et al. (2013), our technology spillover measure specically isolates

the knowledge spillover eect from the product market spillover.

We next examine spillover measures in greater detail. We construct new measures for VC spillover

and entrepreneurial spillover. These measures are correlated with public spillover, as shown in Table 5.

Intuitively, there are strong industry eects. For example, rms in more innovative industries such as

pharmaceuticals have more patents, greater R&D expenses, more inventors, and more VC-backed rms.

Product market spillovers are additionally positively correlated with all technological spillover measures

(0.34 for entrepreneurial, 0.38 for VC, and 0.37 for public spillovers).

However, our measure does capture a novel aspect of interactions between private and public rms beyond

industry eects. Table 6 provides a list of rms with the largest spillovers for each decade. There are at
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least two notable takeaways. First, spillovers and rms beneting from such spillovers change over time.

While Hitachi is ranked 1st in public spillovers in 1990, it is ranked 10th in 2000, and is not in the top 10 in

2019. Similarly, Biogen is ranked 5th among VC spillovers in 1990, but is not in the top 10 in 2000, 2010,

or 2019. Second, there is large industry variation across time period. In 1990 and 2000, rms that benet

most from public spillovers are more likely to be large, stable, manufacturing rms (e.g. General Motors,

Intercontinental Rubber, and HP) and rms with larger VC spillovers are more likely to be in a biotech

sector (e.g. Biogen, Amgen, Sano, Genentech, Genzyme, and Transkaryotic Therapies). However, in 2010

and 2019, this switches to the tech sector for both public and VC spillover. Apple, Microsoft, and Oracle are

in the top 10 public spillover list in both 2010 and 2019. Similarly, there is a shift from biotech to software

companies in the top 10 VC spillover list (e.g. Intel, Oracle, and Progress Software). Overall, this table

shows that public rm spillovers are very dierent from private rm spillovers.

4 The Eect of Private Firm Technology Spillovers on Public Firm

Innovation

4.1 Innovation Quantity

Prior literature shows that large technology spillovers between public rms promote innovation output (Jae,

1986; Bloom et al., 2013). The innovation output of private rms, particularly among young rms, comprises

a signicant amount of economically important novel innovations (Ewens and Marx, 2024). However, it is

unclear whether large spillovers with young, private rms have a positive or negative externality on public

rm innovation output. Similar to public rm spillovers, technology spillovers between private and public

rms could increase innovation output as spillovers create valuable knowledge exposure and thus lower the

cost to innovate for public rms. Alternatively, larger spillovers with private rms could lead to a decrease in

innovation output. Schumpeterian competition theory highlights the cyclical nature of “creative destruction”

(Schumpeter, 2013; Aghion, 1990), whereby new rms and technologies displace older ones. Since young,

private rms are dominant in terms of patent output in the early years of an industry (Ewens and Marx,

2024), public rms with a larger technological overlap may be at risk of displacement, and consequently,

lower innovation output.

To test these predictions, we conduct the following regression analysis:

Innovationi,t = β ln TechnologySpilloveri,t−1 +Xi,t−1 + αi + αt + ϵi,t (5)
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Innovationi,t captures the total number of patents produced and the total number of citations received

by rm i in year t. The independent variable of interest is TechnologySpilloveri,t−1, which measures either

public to public or private to public rm technology spillovers faced by rm i during year t. The vector

Xi,t−1 is the set of rm i’s characteristic controls including, public rm market rivalry, R&D expenditure,

size, age, leverage, market-to-book ratio, capital expenditures, cash and ROA. We include rm xed eects

to control for any time invariant rm characteristics and year xed eects to control for time trends. We

cluster standard errors at the rm level. We estimate a Poisson model as our outcome variables are count

variables, left censored at zero and skewed.

Table 7 presents the results. In Panel A, we use PatentCount as the main innovation output variable.

Columns (1) and (2) replicate the ndings in existing studies regarding how public technology spillovers aect

rms’ patent counts and nd consistent results: larger public to public technology spillovers have a positive

eect in rms’ patenting output. The coecient result in column (2) can be interpreted as a 10% increase in

public spillover results in a 5.4% increase in patent count, an increase of approximately one patent per year.

In columns (3) and (4) we replace the main independent variable with Log(V CSpillover). The coecients

are positive and statistically signicant. The coecient estimate on column (4) can be interpreted as a 10%

increase in VC spillover results in a 2.3% increase in patent count, an increase of roughly 0.4 patents per year.

Columns (5) and (6) display similar results when replacing VC spillover with entrepreneurial spillover. These

results support the ”value” hypothesis: public rms benet not only from other public rms’ innovation, but

also from private rms’ patents.

Next, we conduct a similar analysis with the number of citations received in Panel (B). This measure

captures not only innovation quantity, but also quality. Columns (1) and (2) nd consistent results with prior

literature. Larger public technology spillovers lead to more citations received by public rms, indicating a

positive externality of knowledge transfers. We also nd similar results to patent counts when we replace

public spillover with VC spillover in columns (3) and (4) and entrepreneurial spillover in columns (5) and

(6). The coecient estimates on column (4) can be interpreted as a 10% increase in VC spillover translates

to a 1.82% increase in citation count, which is equivalent to an increase of 1 citation per year. Similar

magnitudes are found when looking at entrepreneurial spillover in column (6). Overall, the results indicate

that larger spillovers with young, private rms lead to higher innovation output (as proxied by patent count)

and innovation impact (as proxied by patent citations). This supports the hypothesis that technological

spillovers to young, private rms create valuable knowledge exposure for public rms, as it lowers their cost

to innovate and consequently increases their innovation output.
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4.2 Novelty of Innovation Output

While the above results show that technological spillovers with young, private rms increase innovation

output, the economic increase is not as large as that of public spillovers. This is unsurprising as public

rms are prolic patenters, representing 58.2% of patents issued and thus, have a larger opportunity for

technological overlap. We therefore further explore the impact of technological spillover with young rms by

examining the disruptiveness and novelty of innovation produced. Prior literature nds that larger spillovers

between public rms lower the cost of incremental innovation relative to breakthrough innovation (Byun

et al., 2021). However, young rms produce more novel patents (Ewens and Marx, 2024) and thus a larger

exposure to young rm innovation may lower the cost to more breakthrough innovation.

We use RETech◁Patent to proxy for the average disruptiveness of a rm’s patenting activity. RETech

captures how early in a technology life cycle a patent occurs (Bowen III et al., 2023). We conduct the

same regression analysis as Equation 7, using an OLS model. The results are displayed in Table 8. Col-

umn (1) shows the results for public rm spillovers. The coecient on Log(PublicSpillover) is negative

and statistically signicant, indicating that larger public rm spillovers leads to less disruptive innovation.

This is consistent with prior literature, that spillovers lower the cost of incremental innovation relative to

breakthrough innovation (Byun et al., 2021). In column (2), we replace the spillover measure with spillovers

between public and VC-backed rms. The coecient is positive and statistically signicant, and can be inter-

preted as a 10% increase in VC spillover results in a 0.6% increase in rm i’s average RETech. In column (3),

we add Log(PublicSpillover) to control for rms with larger patenting activity having both high spillovers

with both public rms and VC-backed rms. The coecient increases substantially, indicating the distinct

eects of public versus VC spillovers for public rm’s future innovation quality. In column (4), we replace

the spillover measure with Log(EntrepSpillover). The coecient is largely insignicant. In column (5), we

include Log(PublicSpillover) as a control and the coecient becomes positive and statistically signicant,

indicating that, after controlling for public rm spillover, rms with large spillovers to entrepreneurial rms

produce more disruptive innovation.

In columns (6) through (10), we use Backward Similarity◁Patent as our main outcome variable. This

measure captures how similar rm’s innovation output is to prior innovation. The result for public spillover is

displayed in column (6). Consistent with prior literature, the coecient on Log(PublicSpillover) is positive

and statistically signicant, indicating that larger spillovers between public rms lead to less novel innovation

output. In column (7), we replace the public spillover with VC spillover. The coecient is negative but

statistically insignicant. However, when we add Log(PublicSpillover) as a control in column (8), the

coecient is negative and statistically signicant and increases largely in magnitude, indicating that after
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controlling for public spillover, rms with larger VC spillover produce more novel innovation. This provides

evidence that rms respond dierently to diering spillovers. In columns (9) and (10) we replace the spillover

measure with Log(EntrepSpillover). The coecient is positive and statistically signicant in column (9) but

becomes insignicant after controlling for public spillover in column (10). Taking these results together, rms

with larger VC spillovers tend to produce more breakthrough and less incremental innovations. Firms with

larger entrepreneurial spillovers tend to produce more novel but not necessarily less incremental innovations.

This may speak to the large variation in entrepreneurial innovations. In addition, the results show that rms

may be subject to multiple spillovers, which can lead to competing innovation responses.

5 Endogeneity

As discussed in Section 3.6, we take both a public rm’s innovation space and private rms’ entry (or

exit) decisions as exogenously given. The primary concern is that private rms may enter a space due to

unobserved transitory shocks, which could also lead to an increase in public rm innovation. For example,

a sudden rise in the protability of a technology could simultaneously attract new entrants and stimulate

innovation among incumbents. In other words, an unobserved, correlated omitted variable could be driving

our results. To address this concern, we conduct a variety of tests.

First, we employ a more comprehensive set of xed eects compared to prior literature. Second, we

identify exogenous changes in the availability of private rm spillovers. We discuss both approaches in detail

below.

5.1 Additional Fixed Eects for Industry-Related Shocks

Prior literature primarily addresses omitted variable concerns by employing rm and year xed eects to

control for time-invariant rm characteristics and overall time trends. However, transitory events, such as

industry-related shocks, can simultaneously drive public rm innovation and increase the number of entrants,

thereby amplifying spillovers. Such shocks may arise from sudden changes in technology protability, shifts

in consumer demand, or regulatory adjustments that impact an entire sector. Standard xed-eect speci-

cations may therefore not fully account for industry-wide uctuations that inuence both public and private

rms operating within a shared knowledge space. To mitigate this concern, we incorporate industry-by-year

xed eects, which more eectively control for industry-specic shocks that could confound our results. We

repeat our main results for technology spillover from private rms on the impact on public rm innovation

novelty and quality. The results remain robust and are displayed in Table A1. with the VC spillover results

in Panel and A and the entrepreneurial results in Panel B.
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5.2 Instrumental Variable Approach: Noncompete Agreements

While industry-by-year xed eects help control for industry-related shocks, they may not fully address

all sources of endogeneity. In particular, unobserved time varying rm-level factors or broader economic

trends could still drive both public rm innovation and private rm spillovers, raising concerns about reverse

causality or omitted variable bias. To establish a stronger causal link, we seek exogenous variation in

spillovers across rms. Specically, we utilize changes in the availability of inventors to private rms caused

by non-competition enforceability laws.

5.2.1 Non-Competition Agreement Institutional Background

Non-compete agreements (NCAs) are contractual clauses that prevent employees from joining or establishing

competing rms. Employers use NCAs to protect trade secrets, proprietary information, and reduce labor

turnover while also imposing deterrent costs on competitors. Since NCAs are part of employment contracts,

their enforceability is governed at the state level, leading to substantial variation across states and over

time. In states with high enforceability, courts uphold long-duration and broad geographic restrictions with

minimal negotiation or additional compensation. For example, after Ohio strengthened NCA enforceability

in 2004, rms were no longer required to provide consideration (e.g., compensation, training, or promo-

tion) when requiring existing employees to sign an NCA. In contrast, states with low enforceability impose

stricter limitations, making it dicult to uphold NCAs in court. A non-compete agreement must be deemed

reasonable by a court to be legally binding.

Prior research nds that changes in NCA enforceability inuence labor mobility, innovation, and en-

trepreneurship. States that increase (decrease) NCA enforceability experience lower (higher) inventor mo-

bility (Marx et al., 2009), higher (lower) out-migration of inventors (Chen et al., 2023), reduced (enhanced)

rm innovation (Stuart and Sorenson, 2003; Starr et al., 2018; Jeers, 2024), and lower (higher) rates of

entrepreneurial entry (Johnson et al., 2023; Marx, 2022). Thus, shifts in NCA enforceability create an ex-

ogenous shock to the number of inventors able to join or establish young rms at the state-level, inuencing

knowledge spillovers from private to public rms.

5.2.2 Empirical Approach

We use time-varying state-level changes in NCA enforceability to causally estimate the impact of knowl-

edge spillovers from private to public rms. Specically, we utilize a year-by-year index of non-compete
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enforceability at the state level created by Marx (2022)7 from 1991 to 2014. The non-compete enforceability

scores by state-year by Marx (2022) can be found in Table A2. The index ranges from 0 (North Dakota)

which indicates no NCA enforceability to 470 (Florida) which is the state with the highest level of NCA

enforceability. Following Marx (2022), we normalize the index to a [0,1] interval.

For a given public rm, we measure its exposure to state-level NCA enforceability through its private

rm peers, based on the headquarters state of each private rm. The underlying premise is that NCA

enforceability inuences young rms’ ability to (a) enter the market and (b) attract inventors. Consequently,

the location of a public rm’s private peers determines these peers’ inventor stock, which in turn aects the

level of technology spillovers they generate to the public rm. The introduction and revision of state NCA

enforceability laws primarily reect broader economic policy shifts, often balancing the interests of employers,

employees, and economic growth. Since the focal public rm experiences technology spillovers from numerous

young rms across dierent states, the aggregated spillover -instrumented by the private rms’ state locations

- should be uncorrelated with the rm’s corporate decisions. This ensures that our instrument reasonably

satises the exclusion criterion.

To construct the instrumented technology spillover measure, we rst predict private rm inventor stock

for a given year. We identify each private rm’s headquarter location (proxied by the location of their

inventors) and regress their inventor stock on their headquartered states’ NCA normalized enforceability

index level:

ˆInventorsj,s,t = βNoncompeteEnforceabilitys,t + αt + ϵ (6)

The results are displayed in panel B of Table A3. In column (1), we regress the level of inventor stock in

VC-backed rms on their states’ normalized enforceability index. The coecient onNoncompeteEnforceability

is negative and statistically signicant, indicating that VC-backed rms in states with a higher enforceability

index experience a decrease in inventor stock. We nd a similar eect in column (2), where we predict the

inventor stock at the entrepreneurial rm-year level.

Next, we use all the private rms’ predicted inventor stock to calculate the predicted technology spillover

the public focal rm faces, using the same equation as Equation 2. This predicted variable (denoted as
ˆLog(V C Spillover) or ˆLog(Entrep Spillover)) is our instrument for technology spillovers. Table A4 reports

the summary statistics for the instrumented measures.

We report the results of our instrumented regressions in Table 9. Panel A reports the rst and second
7Marx (2022) created this index by extending state-by-state indexes from Bishara (2010), who originally created the index

from 1991 to 2009. Marx (2022) determined the index values up until 2014 by using state-level non-compete policy shifts from
Garmaise (2011) and Ewens and Marx (2018).
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stage results for the VC technology spillover regressions and Panel B reports the rst and second stage

results for the entrepreneurial technology spillover regressions. In the rst stage, we conduct the following

specication:

ln V CSpilloveri,t = β ln ˆV CSpilloveri,t +Xi,t−1 + αi + αt + ϵi,t (7)

The results are presented in column (1). The coecient on ln ˆV CSpillover is positive and statistically

signicant, with an F-statistic of 1,486, supporting the relevance criterion and indicating that our instrument

is unlikely to be weak. Columns (2) through (4) report the second-stage results for our main analyses:

patent count and citation count (columns (1) and (2)) capture innovation quantity, while RETech per patent

and backward similarity per patent (columns (3) and (4)) reect innovation novelty. The coecient on

the instrumented ln(V CSpillover) conrms our main ndings: technology spillovers from VC-backed rms

enhance innovation output in public rms (columns (1) and (2)), specically lowering the cost of more novel

innovation (column (3)) and leading public rms to produce innovation that is less incremental (column (4)).

Additionally, the coecient magnitudes remain consistent with our main analysis. Panel B presents similar

results, reinforcing the causal impact of entrepreneurial spillovers on public rm innovation quantity and

novelty. The above analyses show a causal interpretation for the value hypothesis, that public rms with

larger technology spillovers with young rms are more innovative and produce more novel innovations than

rms with lower technology spillovers.

5.2.3 Robustness Test for Instrumental Variable Analyses

The instrument for technology spillovers leverages the headquarters locations of peer private rms to identify

variation in their inventor stock resulting from changes in state-level NCA enforceability. As long as neither

the headquarters locations of peer rms nor changes in state-level NCA enforceability directly aect the

focal rm’s innovation strategies, the exclusion restriction should be reasonably satised.

However, prior literature nds that NCAs inuence public rms’ R&D investment and innovation (e.g.,

Johnson et al., 2023). If a focal public rm experiences signicant technology spillovers from private rms

headquartered in the same state, changes in NCA enforceability could simultaneously aect both private

peers and the focal rm’s innovation investments, potentially violating the exclusion restriction. Nevertheless,

because stronger NCA enforceability tends to have a negative impact on public rm innovation, any resulting

bias in our coecient estimates would be downward. To further address this concern, we repeat the analysis

while excluding public-private rm pairs located in the same state when constructing the spillover measure.

This ensures that spillovers originate from private rms in dierent states, which are not subject to the same

non-compete enforceability. The results, presented in Table A5, are consistent with our main IV analysis. If
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anything, the coecient estimates are slightly larger, suggesting that any bias in our main IV results would

be in the conservative direction.

6 Dissemination of Spillovers

So far, the results show that public rms with signicant spillovers with young rms exhibit higher innovation

output and generate more disruptive and novel innovations, particularly when the young rms are VC-backed.

We next test how public rms’ capitalize on these spillovers.

6.1 Do larger spillovers lead to hiring more VC-backed inventors?

Given the shift in innovation strategies, how do technology spillovers aect rms’ decisions on human capital

accumulation? Specically, do rms prefer to invest in high-skilled human capital to leverage the lower costs

of innovation stemming from younger rms’ knowledge? We examine this question in this section.

We conduct the same regression analysis as in Equation 7. We replace the outcome variables with the

number of inventors hired by public rm i in year t that previously worked at a VC-backed rms in the past

5 years and the the proportion of VC inventors relative to the total number of inventors. Since young rms

account for a disproportionately large share of novel innovations (Ewens and Marx, 2024), hiring inventors

from these rms may allow established rms to access valuable knowledge.

The results are displayed in Table 10. We rst examine whether large spillovers between public rms

leads to an increase in VC inventor hires. The coecient on Log(PublicSpillover) is positive and signicant

in columns (1), indicating that rms with higher public spillover hire more VC inventors. In column (2), the

coecient on Log(V CSpillover) is also positive and signicant, indicating that rm with large VC spillovers

hire more VC inventors. In column (3) we include both Log(V CSpillover) and Log(PublicSpillover). The

coecient on Log(V CSpillover) remains signicant and increases in magnitude, whereas the coecient

on Log(PublicSpillover) reverses its sign and becomes insignicant. This indicates that rms with larger

spillover with VC rms captures most of the variation in new VC inventor hires. In columns (4) and (5),

where nd the rms with higher spillover with entrepreneurial rms also hire more VC inventors (column

(4)), but this eect goes away when including Log(PublicSpillover) (column (5)). In columns (6) through

(10), we repeat the same analysis but replace the number of VC inventor hires with the proportion of VC

inventor hires relative to all hires in that year. The results remain largely consistent with rms with larger

VC spillover hiring more VC inventors relative to other inventors in a given year.
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6.2 Do larger spillovers lead to more strategic ventures?

Next we investigate if larger spillovers with young rms lead to strategic ventures such as acquiring VC-

backed rms or conducting corporate venture capital investments. Firms with larger knowledge spillovers

may acquire VC-backed rms to capitalize on their innovative capabilities and gain access to their novel

technologies. Prior literature nds that technological overlap between rms leads to increased incidence of

acquisitions and combining innovation capabilities are important drivers of acquisitions (e.g. Bena and Li,

2014). In extreme cases, public rms can acquire young rms to put an end to their innovation practices

(Cunningham et al., 2021). We therefore predict that larger spillovers with young rms lead to increased

acquisitions of VC-backed rms. To test this, we replace the dependent variable in Equation 7 with the

number of acquisitions of VC-backed rms and estimate a Poisson regression. The results are shown in

Table 11. Column (1) shows that the eect of Log(PublicSpillover) on the number of VC-backed acquisi-

tions is positive but statistically insignicant. The coecient is positive but statistically insignicant. In

column (2), we replace public spillover with Log(V CSpillover). The coecient is positive and statistically

signicant and can be interpreted as a 10% increase in VC-spillover results in a 2% increase in VC-backed

acquisition in a given year. In Column (3), we include Log(PublicSpillover) as a control. The coecient on

Log(V CSpillover) increases in size and magnitude, indicating spillovers with VC-backed rms account for

all of the variation in VC-backed acquisitions. While smaller in magnitude and signicance, we nd a similar

eect when replacing technology spillover with Log(EntrepSpillover) in columns (4) and (5). We interpret

this nding as one channel through which rms benet from spillovers: Public rms acquire VC-backed rms

to improve their own innovative capabilities, especially when innovation occurs in related elds.8

Lastly, we test the impact of knowledge spillovers on Corporate Venture Capital (CVC) investments. CVC

investments are not conducted for nancial motive, but rather for the strategic value that CVC investments

may add to the parent rm (Hellmann, 2002; Mathews, 2006), indicating that public rms with larger

spillovers may use CVC as method for further knowledge transfer. However, prior literature nds that

CVCs select startups with a similar technology focus but with non-overlapping knowledge base (Ma, 2020),

suggesting that public rms invest in startups because there is a lack of knowledge spillovers. To test this

we replace the dependent variable in Equation 7 with the number of CVC investments made in a public

rm-year and conduct a Poisson regression. Across all types of spillovers (public, VC, and entrepreneurial),

we nd insignicant coecients, supporting prior literature that CVC investments occur between rms with

non-overlapping knowledge base. Interestingly, we do nd a positive and statistically signicant coecient
8One example includes Amazon’s interest in Covariant, a robotics rm. See Bloomberg News from 08/01/2024:

https://www.bloomberg.com/news/articles/2024-08-01/robot-software-maker-covariant-gets-takeover-inquiry-from-
amazon?sref=CUpXQy6u

22



on Log(PMSpillover) with a similar magnitude across all ve specications. Prior literature nds that

rms with higher product market competition either start or increase their CVC investments, shifting away

from internal R&D spending to gain knowledge advantages (Kim et al., 2016). Similarly, we nd a positive

relationship between the potential for product market rivalry and CVC investments.

7 Conclusion

This paper contributes to our understanding of how young rms inuence innovation in incumbent rms

by introducing a novel measure of technology spillovers from young, innovative rms to publicly traded

incumbents. Our ndings show that greater exposure to spillovers from entrants signicantly increases

innovation activity among incumbents operating in similar technological domains, particularly by spurring

more breakthrough rather than incremental innovations. This contrasts with prior research that has largely

focused on spillovers among incumbents. We also document that incumbent rms exposed to higher levels of

entrant-driven spillovers are more likely to hire or acquire VC-backed inventors and startups, highlighting a

key channel through which knowledge diusion occurs. Overall, this study expands the literature on R&D-

driven spillovers by emphasizing the dynamic interplay between entrants and incumbents and the critical

role of young, innovative rms in shaping the innovation trajectories of more established players.
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Figure 1: Technology and Product Market Spillovers 1990 - 2021
This gure plots a time series of the median natural log of public rm spillovers from 1990 to 2021. Panel (A) displays technology
spillovers between public and private rms, specically with VC-backed rms (blue bars) and entrepreneurial rms (red bars).
Panel (B) displays spillovers between public rms, specically technology spillovers (purple bars) and product market spillovers
(orange bars).

(A) VC and Entrepreneurial Spillovers

(B) Public and Product Market Spillovers
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Table 2: Technology Spillovers and Public Firm Clicks
This table shows the relationship between clicks by public rms on private rms’ form D lings and spillovers. The symbols ∗,
∗∗, and ∗ ∗ ∗ indicate signicance at the 10%, 5%, and 1% level, respectively.

Clicks
(1) (2) (3) (4)

Log VC Spillover 0.313*** 1.352*
(6.464) (1.647)

Log Public Spillover 3.329
(1.506)

Log Entrep Spillover 1.283*
(1.954)

ROA -0.000 -0.001 -0.000
(-0.194) (-0.295) (-0.210)

CapEx 0.003 0.003 0.003
(1.111) (1.087) (1.079)

Log Age -0.939 -1.238 -0.900
(-1.186) (-1.250) (-1.180)

Log Size 0.529 0.478 0.540
(1.501) (1.519) (1.469)

Firm FE Yes Yes Yes Yes
Year FE No Yes Yes Yes
R-squared 0.001 0.166 0.166 0.166
N 111,550 99,807 99,807 99,807
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Table 3: Technology Spillovers and Similarity Scores
This table shows the relationship between similarity score by Whalen et al. (2020) and spillover. The test is conditional on
public and private rms ling at least one patent during year t and at least one citation during year t.The symbols ∗, ∗∗, and
∗ ∗ ∗ indicate signicance at the 10%, 5%, and 1% level, respectively.

Similarity Score
(1) (2) (3) (4) (5) (6)

Log VC Spillover 0.009*** 0.009*** 0.005***
(39.638) (37.100) (18.541)

Log Entrep Spillover 0.009*** 0.009*** 0.008***
(25.945) (24.512) (0.000)

R&D 0.000 0.000*** 0.000 0.000***
(0.653) (5.677) (1.210) (0.000)

ROA -0.000* -0.000 -0.000 -0.000
(-1.946) (-0.241) (-1.386) (0.490)

CapEx 0.016** 0.005 0.010 -0.005
(2.072) (1.253) (1.426) (0.428)

Ln Assets 0.004*** 0.002*** 0.005*** 0.003***
(11.735) (8.100) (11.746) (0.000)

Public Firm FE Yes Yes Yes Yes Yes Yes
Private Firm FE Yes Yes No Yes Yes No
Year FE Yes Yes Yes Yes Yes Yes
R-squared 0.354 0.356 0.836 0.404 0.406 0.775
N 981,758 922,526 43,718 467,562 440,686 29,807

30



Table 4: Technology Spillovers and VC and Entrepreneurial Citations
This table examines how technology spillovers impact public rm citations of private rm patents at the public rm-year level.
In columns (1) through (3), the outcome variable is the number of citations of VC-backed patents from led public rm patents.
In columns (4) through (6), the outcome variable is the number of citations of entrepreneurial patents from led public rm
patents. Columns (1) and (4) focus on public spillover, columns (2) and (3) VC-spillover and columns (5) and (6) entrepreneurial
spillover. All specications include rm and year xed eects and time varying rm-level controls. Standard errors are clustered
at the public level. We estimate a Poisson Pseudo Maximum Likelihood (PPML) regression. The symbols ∗, ∗∗, and ∗ ∗ ∗
indicate signicance at the 10%, 5%, and 1% level, respectively.

VC Citation Count Entrep Citation Count
(1) (2) (3) (4) (5) (6)

Log(VC Spillover) 0.369*** 0.397***
(3.76) (4.09)

Log(Entrep Spillover) 0.070 -0.005
(1.63) (-0.10)

Log(Public Spillover) 0.303* -0.081 0.240*** 0.244***
(1.93) (-0.52) (2.87) (2.66)

Log(PM Spillover) 0.006 0.007 0.008 -0.008 -0.005 -0.008
(0.43) (0.50) (0.54) (-0.79) (-0.46) (-0.79)

R&D 0.088 0.070 0.071 0.053 0.065 0.053
(1.21) (0.99) (1.01) (0.56) (0.67) (0.56)

Log(Size) 0.296*** 0.286*** 0.288*** 0.354*** 0.364*** 0.354***
(6.36) (6.33) (6.37) (11.33) (11.65) (11.26)

Log(Age) -0.365*** -0.348*** -0.336*** -0.204*** -0.158*** -0.205***
(-3.55) (-3.46) (-3.29) (-3.61) (-2.81) (-3.64)

Leverage -0.092 -0.097 -0.098 -0.106 -0.108 -0.106
(-0.70) (-0.74) (-0.75) (-1.16) (-1.16) (-1.16)

Capex 0.969 1.071* 1.072* 1.691*** 1.665*** 1.691***
(1.53) (1.78) (1.78) (4.16) (4.17) (4.16)

M/B 0.016*** 0.017*** 0.017*** 0.014*** 0.013*** 0.014***
(3.78) (3.82) (3.81) (5.23) (4.84) (5.24)

Cash 0.028 -0.019 -0.022 0.135 0.144 0.135
(0.16) (-0.11) (-0.12) (1.27) (1.34) (1.27)

ROA 0.017 0.020 0.019 0.005 0.003 0.005
(0.34) (0.42) (0.39) (0.14) (0.09) (0.14)

Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
R-squared 0.83 0.83 0.83 0.86 0.86 0.86
N 82137 82137 82137 82137 82137 82137
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Table 7: Technology Spillovers and Innovation Output
This table examines how technology spillovers impact public rm innovation output at the public rm-year level. In Panel
A, the outcome variable is the number of patents led by the public rm. In Panel B, the outcome is the number of forward
citations the patents led by the public receive. Columns (1) and (2) focus on public spillover, columns (3) and (4) VC-spillover
and columns (5) and (6) entrepreneurial spillover. All specications include rm and year xed eects and even numbered
columns include time varying rm controls. Standard errors are clustered at the public level. We estimate a Poisson Pseudo
Maximum Likelihood (PPML) regression. The symbols ∗, ∗∗, and ∗ ∗ ∗ indicate signicance at the 10%, 5%, and 1% level,
respectively.

Outcome: Innovation Output
(1) (2) (3) (4) (5) (6)

Panel A: Patent Count
Log(Public Spillover) 0.850*** 0.540***

(9.33) (6.11)
Log(VC Spillover) 0.389*** 0.231***

(8.58) (6.02)
Log(Entrep Spillover) 0.294*** 0.170***

(7.58) (5.25)
Log(PM Spillover) 0.015** 0.001 0.035*** 0.010 0.037*** 0.010

(2.04) (0.18) (4.55) (1.28) (4.73) (1.32)
R&D -0.051 0.231*** -0.074 0.253*** -0.079 0.267***

(-1.17) (3.51) (-1.33) (3.69) (-1.29) (3.80)
Panel B: Citation Count

Log(Public Spillover) 0.658*** 0.387***
(7.58) (4.49)

Log(VC Spillover) 0.318*** 0.182***
(6.85) (4.52)

Log(Entrep Spillover) 0.274*** 0.157***
(7.15) (4.67)

Log(PM Spillover) 0.005 -0.001 0.020*** 0.004 0.021*** 0.005
(0.77) (-0.16) (2.75) (0.48) (2.97) (0.54)

R&D -0.016 0.346** -0.028 0.357** -0.026 0.372**
(-0.51) (2.44) (-0.80) (2.47) (-0.76) (2.55)

Firm Controls No Yes No Yes No Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
R-squared 0.87 0.88 0.86 0.88 0.86 0.88
N 89326 82137 89326 82137 89326 82137
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Internet Appendix



A Robustness Tests

Table A1: Technology Spillovers Robustness

Panel A: VC Spillover
Patent Count Citation Count RETech / Patent Backward Similarity / Patent

(1) (2) (3) (4)
Log(VC Spillover) 0.230*** 0.206*** 0.121*** -0.058***

(6.23) (5.65) (6.10) (-3.62)
Controls Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Industry × Year FE Yes Yes Yes Yes
Model Poisson Poisson OLS OLS
R-squared 0.91 0.89 0.59 0.65
N 82137 82137 39380 36872
Panel B: Entrepreneurial Spillover

Patent Count Citation Count RETech / Patent Backward Similarity / Patent
(1) (2) (3) (4)

Log(Entrep Spillover) 0.189*** 0.186*** -0.003 0.024
(5.27) (5.42) (-0.14) (1.50)

Controls Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Industry × Year FE Yes Yes Yes Yes
Model Poisson Poisson OLS OLS
R-squared 0.91 0.89 0.59 0.65
N 82137 82137 39380 36872
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Table A2: Non-compete Enforceability Scores, by state-year
This table is from Marx (2022)

State 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
AL 373 373 373 373 373 373 373 373 373 373 373 373 373 373 373 373 373 373 373 373 373 373 373 373
AK 251 250 249 249 248 248 247 247 246 246 245 245 244 244 243 243 242 242 241 241 241 241 241 241
AZ 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 316 316 316 316 316 316
AR 220 221 222 222 223 223 224 224 225 225 226 226 227 227 228 228 229 229 230 230 230 230 230 230
CA 39 39 38 38 37 37 36 36 35 35 34 34 33 33 32 32 31 31 31 31 31 31 31 31
CO 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 410 410 410 410
CT 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 435 435 435 435 435 435
DE 318 320 322 324 326 328 330 332 334 336 338 340 342 344 346 348 350 352 360 360 360 360 360 360
DC 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310
FL 435 435 435 435 435 470 470 470 470 470 470 470 470 470 470 470 470 470 470 470 470 470 470 470
GA 370 367 364 361 358 355 352 349 346 343 340 337 334 331 328 325 322 319 285 385 385 385 385 385
HI 286 290 294 298 302 306 310 314 318 322 326 330 334 338 342 346 350 354 358 358 358 358 358 358
ID 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 429 429 429 429 429 429 429
IL 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 430 430 430 480 480 480
IN 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370
IA 352 356 360 364 368 372 376 380 384 388 392 396 400 404 408 412 416 420 425 425 425 425 425 425
KS 397 400 403 406 409 412 415 418 421 424 427 430 433 436 439 442 445 448 455 455 455 455 455 455
KY 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 415 415 415 415 415 415
LA 285 285 285 285 285 285 285 285 285 285 380 380 380 285 285 285 285 285 285 285 285 285 285 285
ME 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 370 370 370 370 370 370
MD 348 350 352 354 356 358 360 362 364 366 368 370 372 374 376 378 380 382 379 379 379 379 379 379
MA 405 403 401 399 397 395 393 391 389 387 385 383 381 379 377 375 373 371 375 375 375 375 375 375
MI 367 367 368 368 369 369 370 370 371 371 372 372 373 373 374 374 375 376 379 379 379 379 379 379
MN 340 340 340 340 340 340 340 340 340 340 340 340 340 340 340 340 340 340 340 340 340 340 340 340
MS 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 360 360 360 360 360 360
MO 425 425 425 425 425 425 425 425 425 425 425 425 425 425 425 425 425 425 425 425 425 425 425 425
MT 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 259 259 259 259 259 259
NE 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281
NV 309 309 309 309 309 309 309 309 309 309 309 309 309 309 309 309 309 309 309 309 309 309 309 309
NH 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 311 311 311 311
NJ 385 385 385 385 385 385 385 385 385 385 385 385 385 385 385 385 385 385 385 385 385 385 385 385
NM 409 409 409 409 409 409 409 409 409 409 409 409 409 409 409 409 409 409 409 409 409 409 409 409
NY 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310
NC 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335
ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OH 340 340 340 340 340 340 340 340 340 340 340 340 340 390 390 390 390 390 390 390 390 390 390 390
OK 267 267 267 267 267 267 267 267 267 267 267 267 267 267 267 267 267 267 267 267 267 267 267 267
OR 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 211 211 211 211 211 211 211
PA 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335
RI 299 299 299 299 299 299 299 299 299 299 299 299 299 299 299 299 299 299 299 299 299 299 299 299
SC 285 285 285 285 285 285 285 285 285 285 285 285 285 285 285 285 285 285 245 245 245 245 245 245
SD 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367
TN 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361
TX 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 404 404 404 404 404 404 454 454 454
UT 428 428 428 428 428 428 428 428 428 428 428 428 428 428 428 428 428 428 428 428 428 428 428 428
VT 310 310 310 310 310 310 310 310 310 310 310 310 310 310 360 360 360 360 360 360 360 360 360 360
VI 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335
WA 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
WV 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281
WI 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 319 419 419 419 419 419 419
WY 322 322 322 322 322 322 322 322 322 322 322 322 322 322 322 322 322 322 322 322 322 322 322 322
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Table A3: Predicted Inventor Stock Using Non-Compete Enforceability Index
This table reports summary statistics at the public rm-year level with the IV Sample.

Panel A: Summary Statistics
Mean St. Dev. P1 P25 Median P75 P99 N

VC-Backed Firm-Year Level
Enforceability Index 233.70 167.11 31.00 32.00 335.00 375.00 404.00 80381
Enforceability Index Normalized 0.49 0.35 0.06 0.07 0.70 0.78 0.84 80381
Entrepreneurial Firm-Year Level
Enforceability Index 227.33 167.99 31.00 33.00 316.00 375.00 404.00 37841
Enforceability Index Normalized 0.47 0.35 0.06 0.07 0.66 0.78 0.84 37841

Panel B: Predicted Inventor Stock Regression
Outcome: Inventor Stock

VC-Backed Firm Entrepreneurial Firm
(1) (2)

Enforceability Index Normalized -3.071*** -0.792***
(-6.65) (-5.01)

Year FE Yes Yes
R-squared 0.01 0.02
N 80381 37841
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Table A4: Summary Statistics
This table reports summary statistics at the public rm-year level with the IV Sample.

Mean St. Dev. P1 P25 Median P75 P99 N
Firm-Year Level - IV Sample
Patent Count 18.65 68.11 0.00 0.00 1.00 5.00 30.00 61873
Cites 14.60 49.91 0.00 0.00 0.00 4.06 27.44 61873
Retech/Patent 1.44 1.64 -1.06 0.47 1.04 1.95 3.43 32131
Backward Similarity/Patent 3.01 1.01 0.83 2.30 3.07 3.68 4.25 31846
Log(Predicted VC Spillover) 4.68 1.85 -0.36 3.38 4.72 6.13 7.13 61873
Log(Predicted Entrep Spillover) 2.36 2.24 -4.30 1.07 2.63 4.06 5.01 59731
Firm-Year Level - IV Sample Robustness
Patent Count 18.65 68.11 0.00 0.00 1.00 5.00 30.00 61873
Cites 14.60 49.91 0.00 0.00 0.00 4.06 27.44 61873
Retech/Patent 1.44 1.64 -1.06 0.47 1.04 1.95 3.43 32131
Backward Similarity/Patent 3.01 1.01 0.83 2.30 3.07 3.68 4.25 31846
Log(Predicted VC Spillover) 4.53 1.82 -0.46 3.26 4.55 5.90 6.94 61873
Log(Predicted Entrep Spillover) 2.19 2.22 -4.39 0.95 2.46 3.84 4.81 59638
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Table A5: Technology Spillovers IV - Robust

Panel A: VC Spillover
Log(VC Spillover) Patent Count Citation Count RETech / Patent Backward Similarity / Patent

(1) (2) (3) (4) (5)
ˆLog(VC Spillover) 0.813***

(58.91)
Log(VC Spillover) - Instrumented 0.254*** 0.152** 0.118** -0.090***

(3.41) (2.08) (2.27) (-3.21)
Controls Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Model OLS Poisson Poisson OLS OLS
F-Statistic 1940
R-squared 0.97 0.91 0.88 0.02 0.01
N 49968 49968 49968 25348 25149
Panel B: Entrepreneurial Spillover

Log(Entrep Spillover) Patent Count Citation Count RETech / Patent Backward Similarity / Patent
(1) (2) (3) (4) (5)

ˆLog(Entrep Spillover) 0.245***
(30.64)

Log(Entrep Spillover) - Instrumented 0.329*** 0.182* 0.839*** -0.189***
(3.36) (1.88) (9.73) (-4.11)

Controls Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Model OLS Poisson Poisson OLS OLS
F-Statistic 2407
R-squared 0.92 0.90 0.88 0.00 0.01
N 48115 48201 48201 25057 24862
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B Spillover Construction

We follow Byun et al. (2021), Bloom et al. (2013), and Jae (1986) in constructing our spillover measure.

We provide an example calculation below. Imagine three rms, A,B,C in three tech spaces, T1, T2, T3.

We calculate vectors for each rm in tech space




T1

T2

T3




by calculating ni1
n1

, where ni1 is the number of

rm i’s patents in tech space T1 up until time τ , and n1 is the total number of patents in tech space T1 up

until time τ . For example, if Firm A had 6 patents in T1, 2 patents in T2, and 2 patents in T3, and each

tech space had a total of 10 patents at time τ , then Firm A’s tech space vector is




6
10

2
10

2
10



.

If in the next year, tech space T1 has 20 total patents, and rm A had 12 of them, but all other tech

spaces are unchanged, then rm A’s tech space vector is




12
20

2
10

2
10



. The tech space is therefore a cumulative

measure of public rm i’s technology exposure.

To illustrate the spillover measure, assume that Firm A has vector




0▷6

0▷2

0▷2



, Firm B has vector




0▷1

0▷7

0▷2



, and

Firm C has vector




0▷3

0▷1

0▷6



. In this example, 60% of patents in tech space 1 are led by rm A, 10% are led

by rm B, and 30% are led by rm C.

We begin by calculating spillover between A and B. To calculate Xi,tX
′
j,t for the numerator of the Tech

measure, we take A*B’:




0▷6

0▷2

0▷2




*

0▷1 0▷7 0▷2


= 0.24.

The denominator of Tech is calculated as
√
AA′ ∗

√
BB′ =




0▷6

0▷2

0▷2



∗

0▷6 0▷2 0▷2


*






0▷1

0▷7

0▷2



∗

0▷1 0▷7 0▷2


=

√
0▷44 ∗

√
0▷54.

The total Techijt measure is then equal to 0▷24√
0▷44∗

√
0▷54 = 0▷49. We follow the equivalent steps for
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similarities between A,C and B,C. TechA,C = 0.71 and TechB,C = 0.57.

Next, we multiply each Techij measure by the number of inventors of rm j before summing at the

focal-rm level. The number of inventors proxies for rm j’s innovation input and thus the intensity for the

technology diusion between rms i and j. Assuming rm A has 10 inventors, rm B has 3 inventors, and

rm C has 1 inventor,

SpilltechA = SpillA,B ∗ 3 + SpillA,C ∗ 1 = 0▷49 ∗ 6 + 0▷71 ∗ 1 = 3▷65.

SpilltechB = SpillB,A ∗ 10 + SpillB,C ∗ 1 = 0▷49 ∗ 10 + 0▷57 ∗ 1 = 5▷47.

SpilltechC = SpillC,A ∗ 10 + SpillC,B ∗ 3 = 0▷71 ∗ 10 + 0▷57 ∗ 3 = 8▷81.

Based on these calculations, rm C benets most from spillovers because it has high similarity with rm

A, which also has many scientists working in this space. This measure is not merely capturing the number

of technology elds the focal rms patents cover, but rather the correlation between a rm’s technology

elds and others. The interacted inventors portion of the spillover measure the intensity of the technology

exposure between two rms and together, the knowledge transfer between the two rms.
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